Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Sci Total Environ ; 892: 164495, 2023 Sep 20.
Article in English | MEDLINE | ID: covidwho-2328312

ABSTRACT

Wastewater-based surveillance can be a valuable tool to monitor viral circulation and serve as an early warning system. For respiratory viruses that share similar clinical symptoms, namely SARS-CoV-2, influenza, and respiratory syncytial virus (RSV), identification in wastewater may allow differentiation between seasonal outbreaks and COVID-19 peaks. In this study, to monitor these viruses as well as standard indicators of fecal contamination, a weekly sampling campaign was carried out for 15 months (from September 2021 to November 2022) in two wastewater treatment plants that serve the entire population of Barcelona (Spain). Samples were concentrated by the aluminum hydroxide adsorption-precipitation method and then analyzed by RNA extraction and RT-qPCR. All samples were positive for SARS-CoV-2, while the positivity rates for influenza virus and RSV were significantly lower (10.65 % for influenza A (IAV), 0.82 % for influenza B (IBV), 37.70 % for RSV-A and 34.43 % for RSV-B). Gene copy concentrations of SARS-CoV-2 were often approximately 1 to 2 logarithmic units higher compared to the other respiratory viruses. Clear peaks of IAV H3:N2 in February and March 2022 and RSV in winter 2021 were observed, which matched the chronological incidence of infections recorded in the Catalan Government clinical database. In conclusion, the data obtained from wastewater surveillance provided new information on the abundance of respiratory viruses in the Barcelona area and correlated favorably with clinical data.


Subject(s)
COVID-19 , Influenza, Human , Respiratory Syncytial Virus Infections , Viruses , Humans , Influenza, Human/epidemiology , Respiratory Syncytial Viruses/genetics , Wastewater , COVID-19/epidemiology , SARS-CoV-2 , Wastewater-Based Epidemiological Monitoring , Respiratory Syncytial Virus Infections/epidemiology
2.
Water Res ; 231: 119621, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2184371

ABSTRACT

Besides nasopharyngeal swabs, monkeypox virus (MPXV) DNA has been detected in a variety of samples such as saliva, semen, urine and fecal samples. Using the environmental surveillance network previously developed in Spain for the routine wastewater surveillance of SARS-CoV-2 (VATar COVID-19), we have analyzed the presence of MPXV DNA in wastewater from different areas of Spain. Samples (n = 312) from 24 different wastewater treatment plants were obtained between May 9 (week 19 of 2022) and August 4 (week 31 of 2022). Following concentration of viral particles by a validated aluminum adsorption-precipitation method, a qPCR procedure allowed us to detect MPXV DNA in 56 wastewater samples collected from May 16 to August 4, 2022, with values ranging between 2.2 × 103 to 8.7 × 104 genome copies (gc)/L. This study shows that MPXV DNA can be reproducibly detected by qPCR in longitudinal samples collected from different Spanish wastewater treatment plants. According to data from the National Epidemiological Surveillance Network (RENAVE) in Spain a total of 6,119 cases have been confirmed as of August 19, 2022. However, and based on the wastewater data, the reported clinical cases seem to be underestimated and asymptomatic infections may be more frequent than expected.


Subject(s)
COVID-19 , Monkeypox virus , Humans , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring , DNA , RNA, Viral
3.
Int J Mol Sci ; 23(23)2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2123700

ABSTRACT

The changes occurring in viral quasispecies populations during infection have been monitored using diversity indices, nucleotide diversity, and several other indices to summarize the quasispecies structure in a single value. In this study, we present a method to partition quasispecies haplotypes into four fractions according to their fitness: the master haplotype, rare haplotypes at two levels (those present at <0.1%, and those at 0.1−1%), and a fourth fraction that we term emerging haplotypes, present at frequencies >1%, but less than that of the master haplotype. We propose that by determining the changes occurring in the volume of the four quasispecies fitness fractions together with those of the Hill number profile we will be able to visualize and analyze the molecular changes in the composition of a quasispecies with time. To develop this concept, we used three data sets: a technical clone of the complete SARS-CoV-2 spike gene, a subset of data previously used in a study of rare haplotypes, and data from a clinical follow-up study of a patient chronically infected with HEV and treated with ribavirin. The viral response to ribavirin mutagenic treatment was selection of a rich set of synonymous haplotypes. The mutation spectrum was very complex at the nucleotide level, but at the protein (phenotypic/functional) level the pattern differed, showing a highly prevalent master phenotype. We discuss the putative implications of this observation in relation to mutagenic antiviral treatment.


Subject(s)
Hepatitis E virus , Hepatitis E , Ribavirin , Humans , Follow-Up Studies , Mutagens , Nucleotides , Quasispecies/genetics , Ribavirin/therapeutic use , SARS-CoV-2/genetics , Hepatitis E/drug therapy , Hepatitis E virus/drug effects , Hepatitis E virus/genetics
4.
Sci Rep ; 12(1): 16704, 2022 10 06.
Article in English | MEDLINE | ID: covidwho-2050550

ABSTRACT

Wastewater-based epidemiology has shown to be an efficient tool to track the circulation of SARS-CoV-2 in communities assisted by wastewater treatment plants (WWTPs). The challenge comes when this approach is employed to help Health authorities in their decision-making. Here, we describe the roadmap for the design and deployment of SARSAIGUA, the Catalan Surveillance Network of SARS-CoV-2 in Sewage. The network monitors, weekly or biweekly, 56 WWTPs evenly distributed across the territory and serving 6 M inhabitants (80% of the Catalan population). Each week, samples from 45 WWTPs are collected, analyzed, results reported to Health authorities, and finally published within less than 72 h in an online dashboard ( https://sarsaigua.icra.cat ). After 20 months of monitoring (July 20-March 22), the standardized viral load (gene copies/day) in all the WWTPs monitored fairly matched the cumulative number of COVID-19 cases along the successive pandemic waves, showing a good fit with the diagnosed cases in the served municipalities (Spearman Rho = 0.69). Here we describe the roadmap of the design and deployment of SARSAIGUA while providing several open-access tools for the management and visualization of the surveillance data.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Pandemics , RNA, Viral , Sewage , Wastewater , Wastewater-Based Epidemiological Monitoring
5.
Environ Res ; 208: 112720, 2022 05 15.
Article in English | MEDLINE | ID: covidwho-1654409

ABSTRACT

Wastewater based epidemiology (WBE) offers an overview of the SARS-CoV-2 variants circulating among the population thereby serving as a proper surveillance method. The variant of concern (VOC) Alpha was first identified in September 2020 in the United Kingdom, and rapidly became dominant across Europe. Our objective was to elucidate the Alpha VOC outcompetition rate and identify mutations in the spike glycoprotein (S) gene, indicative of the circulation of the Alpha VOC and/or other variants in the population through wastewater analysis. In the period covered by this study (November 2020-April 2021), forteen wastewater treatment plants (WWTPs) were weekly sampled. The total number of SARS-CoV-2 genome copies per L (GC/L) was determined with a Real-Time qPCR, targeting the N gene. Surveillance of the Alpha VOC circulation was ascertained using a duplex RT-qPCR, targeting and discriminating the S gene. Our results showed that in a period of 6 weeks the Alpha VOC was present in all the studied WWTPs, and became dominant in 11 weeks on average. The outcompetition rates of the Alpha VOC were estimated, and their relationship with different parameters statistically analyzed. The rapid spread of the Alpha VOC was influenced by its initial input and by the previous circulation of SARS-COV-2 in the population. This latter point could be explained by its higher transmissibility, particularly advantadgeous when a certain degree of herd immunity exists. Moreover, the presence of signature mutations of SARS-COV-2 variants were established by deep-sequencing of the complete S gene. The circulation of the Alpha VOC in the area under study was confirmed, and additionally two combinations of mutations in the S glycoprotein (T73A and D253N, and S477N and A522S) that could affect antibody binding were identified.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , SARS-CoV-2/genetics , Wastewater , Wastewater-Based Epidemiological Monitoring
6.
Sci Total Environ ; 805: 149877, 2022 Jan 20.
Article in English | MEDLINE | ID: covidwho-1370681

ABSTRACT

Wastewater surveillance for pathogens using reverse transcription-polymerase chain reaction (RT-PCR) is an effective and resource-efficient tool for gathering community-level public health information, including the incidence of coronavirus disease-19 (COVID-19). Surveillance of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in wastewater can potentially provide an early warning signal of COVID-19 infections in a community. The capacity of the world's environmental microbiology and virology laboratories for SARS-CoV-2 RNA characterization in wastewater is increasing rapidly. However, there are no standardized protocols or harmonized quality assurance and quality control (QA/QC) procedures for SARS-CoV-2 wastewater surveillance. This paper is a technical review of factors that can cause false-positive and false-negative errors in the surveillance of SARS-CoV-2 RNA in wastewater, culminating in recommended strategies that can be implemented to identify and mitigate some of these errors. Recommendations include stringent QA/QC measures, representative sampling approaches, effective virus concentration and efficient RNA extraction, PCR inhibition assessment, inclusion of sample processing controls, and considerations for RT-PCR assay selection and data interpretation. Clear data interpretation guidelines (e.g., determination of positive and negative samples) are critical, particularly when the incidence of SARS-CoV-2 in wastewater is low. Corrective and confirmatory actions must be in place for inconclusive results or results diverging from current trends (e.g., initial onset or reemergence of COVID-19 in a community). It is also prudent to perform interlaboratory comparisons to ensure results' reliability and interpretability for prospective and retrospective analyses. The strategies that are recommended in this review aim to improve SARS-CoV-2 characterization and detection for wastewater surveillance applications. A silver lining of the COVID-19 pandemic is that the efficacy of wastewater surveillance continues to be demonstrated during this global crisis. In the future, wastewater should also play an important role in the surveillance of a range of other communicable diseases.


Subject(s)
COVID-19 , Pandemics , Humans , Prospective Studies , RNA, Viral , Reproducibility of Results , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring
7.
Environ Sci Technol ; 55(17): 11756-11766, 2021 09 07.
Article in English | MEDLINE | ID: covidwho-1358335

ABSTRACT

Since its first identification in the United Kingdom in late 2020, the highly transmissible B.1.1.7 variant of SARS-CoV-2 has become dominant in several countries raising great concern. We developed a duplex real-time RT-qPCR assay to detect, discriminate, and quantitate SARS-CoV-2 variants containing one of its mutation signatures, the ΔHV69/70 deletion, and used it to trace the community circulation of the B.1.1.7 variant in Spain through the Spanish National SARS-CoV-2 Wastewater Surveillance System (VATar COVID-19). The B.1.1.7 variant was detected earlier than clinical epidemiological reporting by the local authorities, first in the southern city of Málaga (Andalucía) in week 20_52 (year_week), and multiple introductions during Christmas holidays were inferred in different parts of the country. Wastewater-based B.1.1.7 tracking showed a good correlation with clinical data and provided information at the local level. Data from wastewater treatment plants, which reached B.1.1.7 prevalences higher than 90% for ≥2 consecutive weeks showed that 8.1 ± 2.0 weeks were required for B.1.1.7 to become dominant. The study highlights the applicability of RT-qPCR-based strategies to track specific mutations of variants of concern as soon as they are identified by clinical sequencing and their integration into existing wastewater surveillance programs, as a cost-effective approach to complement clinical testing during the COVID-19 pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Wastewater
8.
Water Res ; 202: 117435, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1313485

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is shed in the feces of infected people. As a consequence, genomic RNA of the virus can be detected in wastewater. Although the presence of viral RNA does not inform on the infectivity of the virus, this presence of genetic material raised the question of the effectiveness of treatment processes in reducing the virus in wastewater and sludge. In this work, treatment lines of 16 wastewater treatment plants were monitored to evaluate the removal of SARS-CoV-2 RNA in raw, processed waters and sludge, from March to May 2020. Viral RNA copies were enumerated using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) in 5 different laboratories. These laboratories participated in proficiency testing scheme and their results demonstrated the reliability and comparability of the results obtained for each one. SARS-CoV-2 RNA was found in 50.5% of the 101 influent wastewater samples characterized. Positive results were detected more frequently in those regions with a COVID-19 incidence higher than 100 cases per 100,000 inhabitants. Wastewater treatment plants (WWTPs) significantly reduced the occurrence of virus RNA along the water treatment lines. Secondary treatment effluents showed an occurrence of SARS-CoV-2 RNA in 23.3% of the samples and no positive results were found after MBR and chlorination. Non-treated sludge (from primary and secondary treatments) presented a higher occurrence of SARS-CoV-2 RNA than the corresponding water samples, demonstrating the affinity of virus particles for solids. Furthermore, SARS-CoV-2 RNA was detected in treated sludge after thickening and anaerobic digestion, whereas viral RNA was completely eliminated from sludge only when thermal hydrolysis was applied. Finally, co-analysis of SARS-CoV-2 and F-specific RNA bacteriophages was done in the same water and sludge samples in order to investigate the potential use of these bacteriophages as indicators of SARS-CoV-2 fate and reduction along the wastewater treatment.


Subject(s)
COVID-19 , Wastewater , Humans , RNA, Viral , Reproducibility of Results , SARS-CoV-2 , Sewage
9.
Appl Environ Microbiol ; 87(7)2021 03 11.
Article in English | MEDLINE | ID: covidwho-1133127

ABSTRACT

Two large wastewater treatment plants (WWTP), covering around 2.7 million inhabitants, which represents around 85% of the metropolitan area of Barcelona, were sampled before, during, and after the implementation of a complete lockdown. Five one-step reverse transcriptase quantitative PCR (RT-qPCR) assays, targeting the polymerase (IP2 and IP4), the envelope (E), and the nucleoprotein (N1 and N2) genome regions, were employed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA detection in 24-h composite wastewater samples concentrated by polyethylene glycol (PEG) precipitation. SARS-CoV-2 was detected in a sewage sample collected 41 days ahead of the declaration of the first COVID-19 case. The evolution of SARS-CoV-2 genome copies in wastewater evidenced the validity of water-based epidemiology (WBE) to anticipate COVID-19 outbreaks, to evaluate the impact of control measures, and even to estimate the burden of shedders, including presymptomatic, asymptomatic, symptomatic, and undiagnosed cases. For the latter objective, a model was applied for the estimation of the total number of shedders, evidencing a high proportion of asymptomatic infected individuals. In this way, an infection prevalence of 2.0 to 6.5% was figured. On the other hand, proportions of around 0.12% and 0.09% of the total population were determined to be required for positive detection in the two WWTPs. At the end of the lockdown, SARS-CoV-2 RNA apparently disappeared in the WWTPs but could still be detected in grab samples from four urban sewers. Sewer monitoring allowed for location of specific hot spots of COVID-19, enabling the rapid adoption of appropriate mitigation measures.IMPORTANCE Water-based epidemiology (WBE) is a valuable early warning tool for tracking the circulation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among the population, including not only symptomatic patients but also asymptomatic, presymptomatic, and misdiagnosed carriers, which represent a high proportion of the infected population. In the specific case of Barcelona, wastewater surveillance anticipated by several weeks not only the original COVID-19 pandemic wave but also the onset of the second wave. In addition, SARS-CoV-2 occurrence in wastewater evidenced the efficacy of the adopted lockdown measures on the circulation of the virus. Health authorities profited from WBE to complement other inputs and adopt rapid and adequate measures to mitigate the effects of the pandemic. For example, sentinel surveillance of specific sewers helped to locate COVID-19 hot spots and to conduct massive numbers of RT-PCR tests among the population.


Subject(s)
COVID-19/virology , Evolution, Molecular , SARS-CoV-2/genetics , Sentinel Surveillance , Wastewater/virology , Asymptomatic Infections/epidemiology , COVID-19/epidemiology , Cities , Genome, Viral , Humans , Prevalence , Spain/epidemiology , Virus Shedding , Waste Disposal Facilities
10.
Environ Int ; 147: 106326, 2021 02.
Article in English | MEDLINE | ID: covidwho-968314

ABSTRACT

Given the widespread concern but general lack of information over the possibility of SARS-CoV-2 infection in public transport, key issues such as passenger personal hygiene, efficient air circulation systems, and the effective disinfection of frequently touched surfaces need to be evaluated to educate the public and diminish the risk of viral transmission as we learn to live with the ongoing pandemic. In this context we report on a study involving the collection of 99 samples taken from inside Barcelona buses and subway trains in May to July 2020. From this sample group 82 (58 surface swabs, 9 air conditioning (a/c) filters, 3 a/c dust, 12 ambient air) were selected to be analysed by RT-PCR for traces of the SARS-CoV-2 virus. Thirty of these selected samples showed evidence for one or more of 3 target RNA gene regions specific for this virus (IP2, IP4, E). Most (24) of these 30 samples showed positivity for only 1 of the 3 RNA targets, 4 samples yielded 2 targets, and 2 samples provided evidence for all 3 targets. RNA remnants were more common in surface swabs from support bars (23 out of 58) than in ambient air inside the vehicles (3 out of 12), with relatively higher concentrations of viral RNA fragments in buses rather than in trains. Whereas subway train a/c filters examined were all virus-free, 4 of the 9 bus a/c filter/dust samples yielded evidence for viral RNA. After nocturnal maintenance and cleaning most buses initially yielding positive results subsequently showed elimination of the RT-PCR signal, although signs of viral RNA remained in 4 of 13 initially positive samples. The presence of such remnant viral traces however does not demonstrate infectivity, which in the present study is considered unlikely given the fragmentary nature of the gene targets detected. Nevertheless, best practice demands that close attention to ventilation systems and regular vehicle disinfection in public transport worldwide need to be rigorously applied to be effective at eliminating traces of the virus throughout the vehicle, especially at times when COVID-19 cases are peaking. Additionally, infectivity tests should be implemented to evaluate the efficiency of disinfection procedures to complement the information resulting from RT-PCR analysis. Modelling the probability of infection whilst travelling in buses under different scenarios indicates that forced ventilation greatly reduces the risk.


Subject(s)
COVID-19 , Railroads , Humans , Motor Vehicles , Pandemics , RNA, Viral , SARS-CoV-2
11.
Function (Oxf) ; 1(1): zqaa002, 2020.
Article in English | MEDLINE | ID: covidwho-936392

ABSTRACT

Emerging studies increasingly demonstrate the importance of the throat and salivary glands as sites of virus replication and transmission in early COVID-19 disease. SARS-CoV-2 is an enveloped virus, characterized by an outer lipid membrane derived from the host cell from which it buds. While it is highly sensitive to agents that disrupt lipid biomembranes, there has been no discussion about the potential role of oral rinsing in preventing transmission. Here, we review known mechanisms of viral lipid membrane disruption by widely available dental mouthwash components that include ethanol, chlorhexidine, cetylpyridinium chloride, hydrogen peroxide, and povidone-iodine. We also assess existing formulations for their potential ability to disrupt the SARS-CoV-2 lipid envelope, based on their concentrations of these agents, and conclude that several deserve clinical evaluation. We highlight that already published research on other enveloped viruses, including coronaviruses, directly supports the idea that oral rinsing should be considered as a potential way to reduce transmission of SARS-CoV-2. Research to test this could include evaluating existing or specifically tailored new formulations in well-designed viral inactivation assays, then in clinical trials. Population-based interventions could be undertaken with available mouthwashes, with active monitoring of outcome to determine efficacy. This is an under-researched area of major clinical need.

SELECTION OF CITATIONS
SEARCH DETAIL